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Today

• Convex optimization

– why convex optimization?

– general optimization

– machine learning as an optimization

• Machine learning

– statistics perspective

– computer science perspective

– numerical algorithms perspectives
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Prerequisite for the talk

This talk will assume the audience

• has been exposed to basic linear algebra

• can distinguish componentwise inequality from that for positive semidefiniteness, i.e.,

Ax � b⇔

 aT1
...

aTm

 x �
 b1

...

bm

⇔ a
T
i x ≤ bi for i = 1, . . . ,m,

but,

A � 0⇔ A = A
T

and x
T
Ax ≥ 0 for all x ∈ Rn

A � 0⇔ A = A
T

and x
T
Ax > 0 for all nonzero x ∈ Rn
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Why convex optimization?

• many machine learning algorithms (inherently) depend on convex optimization

• one of few optization class that can be actually solved

• many engineering and scientific problems can be cast into convex optimization problems

• many more can be approximated to convex optimization

• convex optimization sheds lights on understanding intrinsic property and structure of

many optimization, hence, machine learning algorithms
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Mathematical optimization

• mathematical optimization problem:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

– x =
[
x1 · · · xn

]T ∈ Rn is the (vector) optimization variable

– f0 : Rn → R is the objective function

– fi : Rn → R are the inequality constraint functions

– hi : Rn → R are the equality constraint functions
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Optimization examples

• circuit optimization

– optimization variables: transistor widths, resistances, capacitances, inductances

– objective: operating speed (or equivalently, maximum delay)

– constraints: area, power consumption

• portfolio optimization

– optimization variables: amounts invested in different assets

– objective: expected return

– constraints: budget, overall risk (or return variance)
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Optimization examples

• machine learning

– optimization variables: model parameters (e.g., neural net weights)

– objective: loss function

– constraints: network architecture
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Solution methods

• for general optimization problems

– extremly difficult to solve (practically impossible to solve)

– most methods try to find (good) suboptimal solutions, e.g., using heuristics

• some exceptions

– least-squares (LS)

– liner programming (LP)

– semidefinite programming (SDP)
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Least-squares (LS)

• least-squares (LS) problem:

minimize ‖Ax− b‖2
2 =

∑m
i=1(a

T
i x− bi)

2

– analytic solution: any solution satisfying (ATA)x∗ = ATb

– extremely reliable and efficient algorithms

– has been there at least since Gauss

• applications

– LS problems are easy to recognize

– has huge number of applications, e.g., line fitting
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Linear programming (LP)

• linear program (LP):
minimize cTx

subject to Ax � b

– no analytic solution

– reliable and efficient algorithms exist, e.g., simplex method, interiorpoint method

– has been there at least since Fourier

– systematical algorithm existed since World War II

• applications

– less obvious to recognize (than LS)

– lots of problems can be cast into LP, e.g., network flow problem
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Semidefinite programming (SDP)

• semidefinite program (SDP):

minimize cTx

subject to F0 + x1F1 + · · ·+ xnFn � 0

– no analytic solution

– but, reliable and efficient algorithms exist, e.g., interior-point method

– recent technology

• applications

– never easy to recognize

– lots of problems, e.g., optimal control theory, can be cast into SDP

– extremely non-obvious, but convex, hence global optimality easily achieved!
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Max-det problem (extension of SDP)

• max-det program:

minimize cTx+ log det(F0 + x1F1 + · · ·+ xnFn)

subject to G0 + x1G1 + · · ·+ xnGn � 0

– no analytic solution

– but, reliable and efficient algorithms exist, e.g., interior-point method

– recent technology

• applications

– never easy to recognize

– lots of stochastic optimization problems, e.g., every covariance matrix is positive

semidefinite

– again convex, hence global optimality (relatively) easily achieved!
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Common features in these Exceptions?

• they are convex optimization problems!

• convex optimization:

minimize f0(x)

subject to fi(x) �Ki 0, i = 1, . . . ,m

Ax = b

where

– f0(λx+ (1−λ)y) ≤ λf0(x) + (1−λ)f0(y) for all x, y ∈ Rn and 0 ≤ λ ≤ 1

– fi : Rn → Rki are Ki-convex w.r.t. proper cone Ki ⊆ Rki

– all equality constraints are linear
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Convex optimization

• algorithms

– classical algorithms like simplex method still work well for many LPs

– many state-of-the-art algorithms develoled for (even) large-scale convex optimization

problems

∗ barrier methods

∗ primal-dual interior-point methods

• applications

– huge number of engineering and scientific problems are (or can be cast into) convex

optimization problems

– convex relaxation
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What’s fuss about convex optimization?

• which one of these problems are easier to solve?

– (generalized) geometric program with n = 3, 000 variables and m = 1, 000

constraints

minimize
∑p0

i=1 α0,ix
β0,i,1
1 · · · x

β0,i,n
n

subject to
∑pj

i=1 αj,ix
βj,i,1
1 · · · x

βj,i,n
n ≤ 1, j = 1, . . . ,m

with αj,i ≥ 0 and βj,i,k ∈ R
⇒ can be solved within 1 minute globally in your laptop computer

– minimization of 10th order polynomial of n = 20 variables with no constraint

minimize
∑10

i1=1 · · ·
∑10

in=1 ci1,...,inx
i1
1 · · · x

in
n

with ci1,...,in ∈ R
⇒ you cannot solve!
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Convex Optimization

• convex optimization problems can be solved very fast and extremely reliably

• a local minimum is a global minimum, which is implied by

f(y) ≥ f(x) +∇f(x)
T
(y − x)

• nice theoretical property, e.g., self-concordance implies complexity bound (for Newton’s

method)

f(x0)− p∗

γ
+ log2 log2(1/ε)

• even better pratical performance!
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Mathematical formulation for (supervised) ML

• given training set, {(x(1), y(1)), . . . , (x(m), y(m))}, where x(i) ∈ Rp and y(i) ∈ Rq

• want to find function gθ : Rp → Rq with learning parameter, θ ∈ Rn

– gθ(x) desired to be as close as possible to y for future (x, y) ∈ Rp × Rq

– i.e., gθ(x) ∼ y

• define a loss function l : Rq × Rq → R+

• solve the optimization problem:

minimize f(θ) = 1
m

∑m
i=1 l(gθ(x

(i)), y(i))

subject to θ ∈ Θ
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Linear regression

• (simple) linear regression is a ML method when

– q = 1, i.e., the output is scalar

– gθ(x) = θT
[

1

x

]
= θ0 + θ1x1 + · · ·+ θpxp, i.e., n = p+ 1

– l : R× R→ R+ is defined by l(y1, y2) = (y1 − y2)
2

– Θ = Rp+1, i.e., parameter domain is all the real numbers

• formulation

minimize f(θ) = 1
m

∑m
i=1

(
θT
[

1

x(i)

]
− y(i)

)2
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Solution method for linear regression

• linear regression is nothing but LS since

mf(θ) =

m∑
i=1

(
θ
T

[
1

x(i)

]
− y(i)

)2

=

∥∥∥∥∥∥∥
 1 x(1)T

... ...

1 x(m)T

 θ −
 y(1)

...

y(m)


∥∥∥∥∥∥∥

2

2

= ‖Xθ − y‖2
2

• convex in θ, hence obtains its global optimality when the gradient vanishes, i.e.,

m∇f(θ) = 2X
T
(Xθ − y) = 2((X

T
X)θ −XT

y) = 0

• analytic solution exists and in practice,

– QR decomposition or single value decomposition (SVD) can be used
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Multiple output linear regression

• multiple output linear regression is a ML method when

– gθ(x) = θT
[

1

x

]
=

 θ1,0 + θ1,1x1 + · · ·+ θ1,pxp
...

θq,0 + θq,1x1 + · · ·+ θq,pxp


– l : Rq × Rq → R+ is defined by l(y1, y2) = ‖y1 − y2‖2

2

– Θ = R(p+1)×q, i.e., parameter domain is all the real numbers

• formulation

minimize f(θ) = 1
m

∑m
i=1

∥∥∥∥θT [ 1

x(i)

]
− y(i)

∥∥∥∥2

2
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Solution method for multiple output linear regression

• linear regression is nothing but LS since

mf(θ) =

m∑
i=1

∥∥∥∥θT [ 1

x(i)

]
− y(i)

∥∥∥∥2

2

=

∥∥∥∥∥∥∥
 1 x(1)T · · · 1 x(1)T

... ... . . . ... ...

1 x(m)T · · · 1 x(m)T

 θ̃ −
 y(1)

...

y(m)


∥∥∥∥∥∥∥

2

2

= ‖X̃θ̃ − y‖2
2

where X̃ ∈ Rm×q(p+1) and θ̃ ∈ Rq(p+1)

• hence, the same method applies
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Linear regression with constraints

• what if we have one constraint?

minimize f(θ) = 1
m

∑m
i=1

(
θT
[

1

x(i)

]
− y(i)

)2

subject to θ1 ≥ 0

• no analytic solution exists (with only one constraint) in general

• however, convex optimization algorithms solve it (almost) as easily as original problem

• but, now with any number of convex constraints

minimize f(θ) = 1
m

∑m
i=1

(
θT
[

1

x(i)

]
− y(i)

)2

subject to gi(θ) ≤ 0 for i = 1, . . . , l

Aθ = b
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Ridge regression

• Ridge regression solves the following problem: (for some λ > 0)

minimize f0(x) = ‖Ax− y‖2
2 + λ‖x‖2

2

– regularization, e.g., to preventing overfitting

• can be extended to (without sacraficing solvability!)

minimize f0(x) = ‖Ax− y‖2
2 + λ‖x‖2

2 =

∥∥∥∥[ A√
λI

]
x−

[
y

0

]∥∥∥∥2

2

subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

• can be incorporated into gradient descent algorithm, e.g.,

∇f(x) = 2A
T
(Ax− y) + 2λx
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Lasso (least absolute shrinkage & selection operator)

• Lasso solves (a problem equivalent to) the following problem:

minimize f0(x) = ‖Ax− y‖2 + λ‖x‖1

– 1-norm penalty term for parameter selection

– similar to drop-out technique for regularization

• However, the objective funtion not smooth.

• simple trick would solve this problem

minimize f0(x) = ‖Ax− y‖2 + λ
∑n

i=1 zi
subject to −zi ≤ xi ≤ zi, i = 1, . . . , n

fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p
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Support vector machine

• problem definition:

– given x(i) ∈ Rp: input data, and y(i) ∈ {−1, 1}: output labels

– find hyperplane which separates two different classes as distinctively as possible (in

some measure)

• (typical) formulation:

minimize ‖a‖2
2 + γ

∑m
i=1 ui

subject to y(i)(aTx(i) + b) ≥ 1− ui, i = 1, . . . ,m

u � 0

– convex optimization problem, hence stable and efficient algorithms exist even for

very large problems

– has worked extremely well in practice (until... deep learning boom)
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Support vector machine with kernels

• use feature transformation φ : Rp → Rq (with q > p)

• formulation:

minimize ‖ã‖2
2 + γ

∑m
i=1 ũi

subject to y(i)(ãTφ(x(i)) + b̃) ≥ 1− ũi, i = 1, . . . ,m

ũ � 0

• still convex optimization problem
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Duality

• every (constrained) optimization problem has a dual problem (whether or not it’s a

convex optimization problem)

• every dual problem is a convex optimization problem (whether or not it’s a convex

optimization problem)

• duality provides optimality certificate, hence plays central role for modern optimization

and machine learning algorithm implementation

• (usually) solving one readily solves the other!
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Lagrangian

• standard form problem:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

where x ∈ Rn is optimization variable, D is domain, p∗ is optimal value

• Lagrangian: L : Rn × Rm × Rp → R with domL = D × Rm × Rp defined by

L(x, λ, ν) = f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

– λi: Lagrange multiplier associated with fi(x) ≤ 0

– νi: Lagrange multiplier associated with hi(x) = 0
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Lagrange dual function

• Lagrange dual function: g : Rm × Rp → R defined by

g(λ, ν) = inf
x∈D

L(x, λ, ν) = inf
x∈D

(
f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

)

– g is always concave

– g(λ, ν) can be −∞

• lower bound property: if λ � 0, then g(λ, ν) ≤ p∗
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Dual problem

• Lagrange dual problem:
maximize g(λ, ν)

subject to λ � 0

– is a convex optimization problem

– provides a lower bound on p∗

• let d∗ denote the optimal value for the dual problem

– week duality: d∗ ≤ p∗

– strong duality: d∗ = p∗
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Dual problem provides optimality certificate!

• (almost) all algorithms solves the dual problem simultaneously

• Lagrangian dual variables obtained with no additional cost

• if iterative algorithm generates solution sequence,

(x
(1)
, λ

(1)
, ν

(1)
)→ (x

(2)
, λ

(2)
, ν

(2)
)→ (x

(3)
, λ

(3)
, ν

(3)
)→ · · ·

then, we have an optimality certificate:

f(x
(k)

)− p∗ ≤ f(x
(k)

)− g(λ(k)
, ν

(k)
)
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Weak duality

• weak duality implies d∗ ≤ p∗

– always true (by construction of dual problem)

– provides nontrivial lower bounds, especially, for difficult problems, e.g., solving the

following SDP:
maximize −1Tν
subject to W + diag(ν) � 0

gives a lower bound for max-cut problem

minimize xTWx

subject to x2
i = 1, i = 1, . . . , n
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Strong duality

• strong duality implies d∗ = p∗

– not necessarily hold; does not hold in general

– usually holds for convex optimization problems

– conditions which guarantee strong duality in convex problems called constraint

qualifications
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Duality example: LP

• primal problem:
minimize cTx

subject to Ax � b
• dual function:

g(λ) = inf
x

((
c+ A

T
λ
)T
x− bTλ

)
=

{
−bTλ if ATλ+ c = 0

−∞ otherwise

• dual problem:
maximize −bTλ
subject to ATλ+ c = 0

λ � 0

– Slater’s condition implies that p∗ = d∗ if Ax̃ ≺ b for some x̃

– truth is, p∗ = d∗ except when both primal and dual are infeasible
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Duality example: QP

• primal problem (assuming P ∈ Sn++):

minimize xTPx

subject to Ax � b

• dual function:

g(λ) = inf
x

(
x
T
Px+ λ

T
(Ax− b)

)
= −

1

4
λ
T
AP

−1
A
T
λ− bTλ

• dual problem:
maximize −λTAP−1ATλ/4− bTλ
subject to λ � 0

– Slater’s condition implies that p∗ = d∗ if Ax̃ ≺ b for some x̃

– truth is, p∗ = d∗ always!
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Complementary slackness

• assume strong dualtiy holds, x∗ is primal optimal, and (λ∗, ν∗) is dual optimal

f0(x
∗
) = g(λ

∗
, ν
∗
) = inf

x

(
f0(x) +

m∑
i=1

λ
∗
ifi(x) +

p∑
i=1

ν
∗
i hi(x)

)

≤ f0(x
∗
) +

m∑
i=1

λ
∗
ifi(x

∗
) +

p∑
i=1

ν
∗
i hi(x

∗
)

≤ f0(x
∗
)

• thus, all inequalities are tight, i.e., they hold with equalities

– x∗ minimizes L(x, λ∗, ν∗)

– λ∗ifi(x
∗) = 0 for all i, known as complementary slackness

λ
∗
i > 0⇒ fi(x

∗
) = 0, fi(x

∗
) < 0⇒ λ

∗
i = 0
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Karush-Kuhn-Tucker (KKT) conditions

• KKT (optimality) conditions consist of

– primal feasibility: fi(x) ≤ 0 for all 1 ≤ i ≤ m, hi(x) = 0 for all 1 ≤ i ≤ p

– dual feasibility: λ � 0

– complementary slackness: λifi(x) = 0

– zero gradient of Lagrangian: ∇f0(x) +
∑m

i=1 λi∇fi(x) +
∑p

i=1 νi∇hi(x) = 0

• if strong daulity holds and x∗, λ∗, and ν∗ are optimal, they satisfy KKT condtions!
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KKT conditions for convex optimization problem

• if x̃, λ̃, and ν̃ satisfy KKT for convex optimization problem, then they are optimal!

– complementary slackness implies f0(x̃) = L(x̃, λ̃, ν̃)

– last conidtion together with convexity implies g(λ̃, ν̃) = L(x̃, λ̃, ν̃)

• thus, for example, if Slater’s condition is satisfied, x is optimal if and only if there exist

λ, ν that satisfy KKT conditions

– Slater’s condition implies strong dualtiy, hence dual optimum is attained

– this generalizes optimality condition ∇f0(x) = 0 for unconstrained problem
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Machine Learning

• machine learning

– is the subfield of computer science that “gives computers the ability to learn without

being explicitly programmed.” (Arthur Samuel, 1959)

– learns from data and predicts on data
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Two famous quotes

• The grand aim of all science is to cover the greatest number of empirical facts by

logical deduction from the smallest possible number of hypotheses or axioms.

– Albert Einstein

• Civilization advances by extending the number of important operations which we can

perform without thinking about them. (Operations of thought are like cavalry charges

in a battle – they are strictly limited in number, they require fresh horses, and must

only be made at decisive moments.)

– Alfred North Whitehead
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• The grand aim of all science is to cover the greatest number of empirical facts by

logical deduction from the smallest possible number of hypotheses or axioms.

– Albert Einstein
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Different perspectives on machine learning

• statistical view

• computer scientific perspective

• numerical algorithmic perspective

• performance acceleration exploiting hardward architecture
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Statistical perspective

• suppose data set Xm = {x(1), . . . , x(m)}

– drawn independently from (true, but unknown) data generating distribution pdata(x)

• Maximum Likelihood Estimation (MLE) is to solve

maximize pdata(X; θ) =
∏m

i=1 pdata(x
(i); θ)

• equivalent, but numerically friendly formulation:

maximize log pdata(X; θ) =
∑m

i=1 log pdata(x
(i); θ)
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Equivalence of MLE to KL divergence

• in information theory, Kullback-Leibler (KL) divergence defines distance between two

probability distributions, p and q:

DKL(p‖q) =

∫ ∞
−∞

p(x) log
p(x)

q(x)
dx

• KL divergence between data distribution, pdata, and model distribution, pmodel, can be

approximated by Monte Carlo method as

DKL(pdata‖pmodel) '
1

m

m∑
i=1

(log pdata(x
(i)

)− log pmodel(x
(i)

; θ))

• hence, minimizing the KL divergence is equivalent to maximizing the log-likelihood!
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Equivalence of MLE to MSE

• assume the model is Gaussian, i.e., y ∼ N (gθ(x),Σ):

p(y
(i)|x(i)

; θ) =
1

√
2π

p|Σ|1/2
exp

(
−

1

2

(
y

(i) − gθ(x(i)
)
)T

Σ
−1
(
y

(i) − gθ(x(i)
)
))

• assuming that Σ = Ip, the log-likelihood becomes

m∑
i=1

log p(y
(i)|x(i)

; θ) = −
m∑
i=1

‖y(i) − gθ(x(i)
)‖2

2/2−
pm

2
log(2π)

• hence, maximizing log-likelihood is equivalent to minimizing mean-square-error (MSE)!
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Other statistical factors

• overfitting problems

• training and test

• cross-validation

• regularization

• drop-out
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Computer scientific perspectives

• neural network architectures

• hyper parameter optimization

• double/single precision representation

• low-power machine learning (especially for inference)
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Numerical algorithmic perspectives

• basic formulation:

minimize f(θ) = 1
m

∑m
i=1 l(gθ(x

(i)), y(i))

• formulation with regularization:

minimize f(θ) = 1
m

∑m
i=1 l(gθ(x

(i)), y(i)) + γr(θ)

• stochastic gradient descent (SGD):

θ
(k+1)

= θ
(k) − αk∇f(θ)

• some other momentum and adaptive methods: Nesterov’s accelerated gradient method,

AdaGrad, RMSProp, Adam, etc.
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In summary

• convex optimization problems are one of few optimization problems that can actually

be solved

• many ML problems can be cast into convex optimizations

• convex optimization could inspire new methods for MLs

• optimality conditions hold even at local minima (stochastic) gradient methods find

• optionization theory provides firm ground for many advanced adaptive ML algorithms
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Thank you!
Sunghee Yun (sunyun@amazon.com)
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